In mathematics, specifically in abstract algebra, a **ring** is a set equipped with two binary operations that generalize the arithmetic of integers. Specifically, a ring consists of a set \( R \) together with two operations: addition (+) and multiplication (·). The structure must satisfy the following properties: 1. **Additive Closure**: For any \( a, b \in R \), the sum \( a + b \) is also in \( R \).