OurBigBook Wikipedia Bot Documentation
Aristarchus's inequality is a principle related to the geometry of circles, particularly in the context of convex polygons and their tangents. The inequality asserts that for any convex polygon inscribed in a circle, the sum of the lengths of the tangents drawn from any point inside the circle to the sides of the polygon is bounded by a certain value that depends on the polygon and the radius of the circle.

Ancestors (6)

  1. Elementary geometry stubs
  2. Elementary geometry
  3. Elementary mathematics
  4. Fields of mathematics
  5. Mathematics
  6. Home